Outcome measures in ambulatory boys with DMD
(London, UK 21 June 2013)

Craig M. McDonald, MD
Professor and Chair
Physical Medicine & Rehabilitation
Professor of Pediatrics
Director Neuromuscular Medicine Research Center
University of California Davis School of Medicine
Decision Framework for Inclusion of Clinical Outcome Measures in Trials

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Griffiths locomotor</th>
<th>Bayley III Gross Motor</th>
<th>North Star Amb. Ass. (NSAA)</th>
<th>Timed Function Tests</th>
<th>6MWT</th>
<th>Strength MMT</th>
<th>Strength Quant.</th>
<th>Pulmonary Function Tests</th>
<th>Perf Upper Limb (PUL)</th>
<th>PROs - PODCI</th>
<th>PROs - PROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical subgroups</td>
<td>0-8 years</td>
<td>1-42 mo.</td>
<td>3.5 years until non-amb</td>
<td>4 years until non-amb</td>
<td>5 years until non-amb</td>
<td>4 years to grade 2-</td>
<td>LE: 5-12 UE:5-20+</td>
<td>7 – 20+ years</td>
<td>7 – 20+ years</td>
<td>3 – 21 years</td>
<td>7 – 20+ years</td>
</tr>
<tr>
<td>Supports mechanism of action</td>
<td>✔️</td>
</tr>
<tr>
<td>Conceptual framework fits DMD</td>
<td>✔️</td>
</tr>
<tr>
<td>Reliability</td>
<td>✔️</td>
</tr>
<tr>
<td>Validation with other measures</td>
<td>✔️</td>
</tr>
<tr>
<td>Normative ranges</td>
<td>✔️</td>
</tr>
<tr>
<td>Ongoing natural history Studies</td>
<td>✔️</td>
</tr>
<tr>
<td>Multicenter studies</td>
<td>✔️</td>
</tr>
<tr>
<td>Responsiveness to treatment</td>
<td>?</td>
<td>?</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️ or (-)</td>
<td>✔️ or (-)</td>
<td>✔️ if age ≥ 10</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Clinical meaningfulness</td>
<td>?</td>
<td>?</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>?</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Line 305-307

“There are however several caveats with using the 6MWT as an outcome measure, which mainly pertain to a learning effect, to inter- and intra-personal variability, and to the definition of a clinically relevant differences.

Much new data has been published in 2012 -2013 concerning the 6MWT in DMD
Validation: 6MWT in DMD as a global / integrated measure of systems involved in walking

Gait Pathomechanics / Disease Progression
- 6MWD Correlates w/ Stride length/ Cadence (McDonald 2010)

Skeletal Muscle Strength
- Knee Ext (NM/Kg) (McDonald 2013)

Biomechanical efficiency
- Energy Exp Index (Heart Rate) (McDonald 2013)

Endurance
- 10 min Continuous Step Activity (StepWatch) (McDonald 2013)

Gross motor skills
- North Star (Mazzone 2010, Goemans 2013)
Natural History of the 6MWD (1-2 years)

Most publications 2012-2013
Observed mean change in 6MWD by baseline 6MWD (≥350 meters vs <350 meters from McDonald et al 2013)
6MWT measures disease progression (no “learning effect”)

Natural History of 6MWT Findings in DMD

Maturational Issues

Variability Issues
6MWT AND other endpoints (TFTs; North Star)

- Steroids
- Genetics/Polymorphisms
- Baseline function

Observational Study
McDonald et al 2010

Ataluren trial N=57
McDonald et al. 2013

6-Test Field Trial Study - TFTs
DMD Natural History: 6MWD plotted by age

Maturational Issues

Variability in disease progression

N=65
Percent Predicted 6MWD to Account for Maturational Influences: Geiger Equation

Age and baseline 6MWD are key factors in predicting change in function over 48 weeks

Placebo Data: Ataluren Trial – 37 sites
Change in % Predicted 6MWD
(Baseline to Week 48)

Natural History Data: Belgium
Change %-predicted 6MWD
(Baseline to Week 52)

Δ - 44 meters (SD 88)
Δ – 7.3%
McDonald et al.
Muscle & Nerve 2013

Δ - 43 meters (SD 90)
Δ – 8.1%
N. Goemans et al.
Neuromuscular Disorders, 2013
EMA guidelines: Is there a “caveat” in terms of definition of clinically relevant differences?

- What is a Clinically Meaningful Change in 6MWD?
 - Statistical Distribution Properties
Table: Estimates of the MCID for 6MWD and other endpoints in DMD based on pretreatment baseline data (McDonald et al. Muscle & Nerve 2013)

<table>
<thead>
<tr>
<th>6MWD</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Correlation</th>
<th>MCID</th>
<th>MCID / Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Error of Measurement Method (baseline SD * √ (1 – r))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline 6MWD, m</td>
<td>174</td>
<td>358</td>
<td>95</td>
<td>0.91</td>
<td>28.5</td>
<td>8.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1/3 of SD Method (baseline SD * 1/3)</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>MCID</th>
<th>MCID / Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 6MWD, m</td>
<td>174</td>
<td>358</td>
<td>95</td>
<td>31.7</td>
<td>8.9%</td>
</tr>
</tbody>
</table>

TFTs: MCID / Mean 2-3X Greater

Clinical Meaningfulness of 6MWD: Prediction of Milestones
Strong linear relationships exists between % change in 6MWD and % change in 10m run/walk. (McDonald et al Muscle & Nerve. 2013 May 16. doi: 10.1002/mus.23902)

- 10 meter walk/run has a lower re-test reliability compared to 6MWD
- Easily performed in clinic
- Substantial amount of natural history data linking 10m run/walk values to clinically meaningful milestones
Cooperative International Neuromuscular Research Group (CINRG) natural history data indicate changes in 10m run/walk over 1 year predict for future loss of ambulation (McDonald et al. 2013)

10-meter run/walk data in a DMD natural history study (N=177 pts)

- >= 10% decline over 1 year
- Loss of ambulation over 4 years
Responsiveness to Therapy of 6MWD
Observed mean change in 6MWD with Ataluren

Change in 6MWD, mean ± SE (m)

-60 -40 -20 0 20 40

Baseline 6 12 18 24 30 36 42 48

Time (weeks)

Low Dose (N=57)

High Dose (N=60)

Placebo (N=57)

Low-dose vs. Placebo
Refined analysis: $p = 0.0281$
Adjusted $p = 0.0561$

Delta = 31.3 m

-44.1 (±90) m

-12.9 (±71) m
Time to persistent 10% worsening indicated a slower disease progression in the low-dose ataluren group.

Low-dose vs. Placebo
Nominal p = 0.0386

- **Low Dose (N=57)**: 26% progressed
- **High Dose (N=60)**: 44% progressed
- **Placebo (N=57)**: 48% progressed
% Predicted 6MWD in Prosensa Extension Study (PRO 051 X 93 weeks)
Drisapersen (GSK) Demand II (Phase II) (those who stand in < 7 sec)

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Week 25</th>
<th>Week 49</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clinical Benefit</td>
<td>P value</td>
</tr>
<tr>
<td>Drisapersen (Continuous vs. Placebo)</td>
<td>35.09 m</td>
<td>P= 0.014</td>
</tr>
<tr>
<td>Drisapersen (Intermittent vs. Placebo)</td>
<td>3.51 m</td>
<td>P=0.801</td>
</tr>
<tr>
<td>Placebo Δ6MWD</td>
<td>-3.6 m</td>
<td></td>
</tr>
</tbody>
</table>
Clinical Meaningfulness of 6MWD: Prediction of Disease Progression and Loss of Ambulation

Higher baseline function or stabilization of baseline function over the short-term by ≥ 30 meters is almost always associated with slower long-term decline in DMD.
Initial 6MWD and Time to 10% Progression

6MWD as a Predictor of Loss of Ambulation (PTC ataluren trial)

Δ 30 meters from mean 6MWD

Baseline 6MWD predicts weeks to lose of ambulation over 48 weeks with $r = 0.85$ and $R^2 = 0.73$

Ataluren trial:
6MWD < 320 m \Rightarrow 33% lost ambulation over 1 year

Italian series (Mercuri et al. 2013):
6MWD < 320 m \Rightarrow 30% lost ambulation over 2 years
Proportion of boys with DMD losing ambulation over 2 years by baseline 6MWD (30 meter increments) (Mercuri, and colleagues 2013)

Δ 30 meters
Clinical Meaningfulness of 6MWD: Relationship to person-reported outcomes (PROs)
6MWD correlates with PODCI (POSNA) Global Scale Score (adjusted $R^2 = 0.83$)

Fig 2a: 6-Minute Walk Distance vs. PODCI Global Score

- Transfers & Basic Mobility
- Sports / Physical Functioning
- Upper extremity and physical function
- Pain/Comfort

Henricson EK, Abresch RT, Han JJ, Nicorici A, Goude E, DeBie E, McDonald CM. The 6-minute walk test and person-reported outcomes in boys with Duchenne muscular dystrophy and typically developing controls: Longitudinal comparisons and clinically-meaningful changes over one year. Submitted for publication.
6MWD as a Measure of Disease Progression

Higher baseline function or stabilization of baseline function over the short-term by ≥ 30 meters is almost always associated with slower long-term decline in DMD.

Walking Function and Prediction of Loss of Ambulation

30 m ↓ from baseline → 10% worsening over 1 year → Loss of Ambulation (4 yrs)

Log Rank p = 0.0001

% not 10% Worsened

Week of Progression

100 90 80 70 60 50 40 30 20 10 0

< 325 m (n=19)

325 - 410 m (n=19)

≥ 410 m (n=19)

Log-rank P-value < 0.0001
EMA Guideline on the clinical investigation of medicinal products for the treatment of Duchenne and Becker muscular dystrophy

“Several “caveats” with using the 6MWT:

- **learning effect** → Not over 12 months

- **inter- and intra-personal variability**

- Variability due to disease progression in all measures, mitigated by selection criteria, and use of percent predicted 6MWD

- **definition of a clinically relevant differences**

- 30 Meters matters (MCID; disease progression)
North Star Ambulatory Assessment

- 17 point disease and stage specific rating scale
- Clearly defined Conceptual Framework (Scott 2011)
- Development process outlined in earlier papers (Scott 2011)
- Reliability and validity data published (Mazzone 2009, Mazzone 2010)
Clinical Meaning of North Star

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 1</td>
<td>Stand</td>
</tr>
<tr>
<td>Item 2</td>
<td>Can't stand to pee, access to high items like elevator buttons, light switches and cupboards</td>
</tr>
<tr>
<td>Item 3</td>
<td>Stand up from chair</td>
</tr>
<tr>
<td>Item 4 & 5</td>
<td>Stand on one leg</td>
</tr>
<tr>
<td>Item 6-9</td>
<td>Climb on and off box step</td>
</tr>
<tr>
<td>Item 10</td>
<td>Get to sitting</td>
</tr>
<tr>
<td>Item 11</td>
<td>Can get up if falls down, can sit on floor with the rest of classmates without needing help to get up</td>
</tr>
<tr>
<td>Item 13</td>
<td>Can sit up in bed, can assume a safer position if fall occurs</td>
</tr>
<tr>
<td>Item 14-17</td>
<td>Jump, hop and run</td>
</tr>
<tr>
<td>Item 18</td>
<td>Playing, access to sport, keeping up socially and physically with peers</td>
</tr>
</tbody>
</table>
Baseline NorthStar vs Baseline 6MWD

Italy: (Mazzone et al. 2010)
$r = 0.675$

Belgium:
N. Goemans et al. 2013
Pearson $r = 0.76$

Slope = 5.7/100 Meter
Correlation: $r = 0.675$
Detecting meaningful change in North Star Ambulatory Assessment in Duchenne Muscular Dystrophy

Anna G. Mayhew1, Stefan J. Cano2, Elaine Scott 3, Michelle Eagle1, Kate Bushby1, Adnan Manzur4, Francesco Muntoni4 ON BEHALF OF THE NORTH STAR CLINICAL NETWORK FOR PAEDIATRIC NEUROMUSCULAR DISEASE
NSAA scale: Transformation of ordinal level scores into linearised measurements

21 to 11 = loss of ability to stand still

50 to 40 = inability to rise independently from the floor

90 to 80 = can no longer hop.

Minimal Important Difference (MID), calculated as $\frac{1}{2}$ SD demonstrated to be slightly less than 10 points on the transformed NSAA scale.
Responsiveness analysis based on longitudinal data comparison of stable prednisolone regimes daily v intermittent

- NSAA scale (Linearized data): detected a difference in the two steroid regimes (daily versus intermittent steroids). Mean person estimates were higher in the daily prednisolone group.

N=198 boys (total of 805 longitudinal assessments) from sixteen UK Neuromuscular specialist centres.
NSAA in clinical trials – commonly used as a secondary endpoint

- Proensa Natural History
- AFM Natural History
- GSK/Proensa Exon skipping programme – Phase 2/3
- For DMD Phase 3
- PTC – 020 Phase 3
- Eli Lilly – Tadalafil phase 3
- Serepta/AVI exon skipping programme
Conclusions regarding ambulatory measures

• Much new data in 2012-2013 linking the 6MWT to clinically meaningful changes in DMD
• 30 meters = MCID
• 6MWD measures disease progression and predicts loss of ambulation

\[
30 \text{ m} \downarrow \text{from baseline} \rightarrow 10\% \text{ worsening over 1 year} \rightarrow \text{Loss of Ambulation (4 yrs)}
\]

\[
\Delta 30 \text{ meters from baseline associated with a risk of losing ambulation over 2 years}
\]

• Northstar: A DMD disease and stage specific rating scale
• (0-100 Linearised): 10 point change is clinically meaningful